EMODnet   ERDDAP server @ EMODnet
    Easier access to scientific data
?    
Brought to you by EMODnet    

ERDDAP > griddap > Make A Graph ?

Dataset Title:  Mediterranean Sea, Po River, Water body chlorophyll-a [time][depth][lat][lon],
0.009deg, 1999
Subscribe RSS
Institution:  HCMR/HNODC   (Dataset ID: Po_River_Chl_4D_06e1_24c4_8bde)
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form
 
Graph Type:  ?
X Axis:  ?
Y Axis:  ?
Color:  ?
 
Dimensions ?    Start ?    Stop ?
time (UTC) ?     specify just 1 value →
    |< -
< <
depth (m) ?     specify just 1 value →
    |< -
< <
latitude (degrees_north) ?
    +
    -
< slider >
longitude (degrees_east) ?
    +
    -
< slider >
 
Graph Settings
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom:
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 6.351264e+8, 6.587136e+8;
    String axis "T";
    String calendar "standard";
    String climatology "climatology_bounds";
    String ioos_category "Time";
    String long_name "Time";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 actual_range 0.0, 70.0;
    String axis "Z";
    String ioos_category "Location";
    String long_name "Depth";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 actual_range 44.0, 45.998;
    String axis "Y";
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 actual_range 12.0, 13.998;
    String axis "X";
    String ioos_category "Location";
    String long_name "Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Water_body_chlorophyll_a {
    Float32 _FillValue 9.96921e+36;
    String cell_methods "time: mean within years time: mean over years";
    String long_name "Water body chlorophyll-a";
    Float32 missing_value 9.96921e+36;
    String standard_name "water_body_chlorophyll-a";
    String units "mg/m3";
  }
  Water_body_chlorophyll_a_L1 {
    Float32 _FillValue 9.96921e+36;
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String long_name "Water body chlorophyll-a masked using relative error threshold 0.3";
    Float32 missing_value 9.96921e+36;
    String standard_name "water_body_chlorophyll-a";
    String units "mg/m3";
  }
  Water_body_chlorophyll_a_L2 {
    Float32 _FillValue 9.96921e+36;
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String long_name "Water body chlorophyll-a masked using relative error threshold 0.5";
    Float32 missing_value 9.96921e+36;
    String standard_name "water_body_chlorophyll-a";
    String units "mg/m3";
  }
  Water_body_chlorophyll_a_relerr {
    Float32 _FillValue 9.96921e+36;
    Float64 colorBarMaximum 0.1;
    Float64 colorBarMinimum 0.0;
    String long_name "Relative error of Water body chlorophyll-a";
    Float32 missing_value 9.96921e+36;
    String units "1";
    Float32 valid_max 1.0;
    Float32 valid_min 0.0;
  }
  NC_GLOBAL {
    String abstract 
"Water body chlorophyll-a - Seasonal Climatology for Po River for the period 1960-2020 on the domain: Lon E12.0-14.0deg., Lat N44.0-46.0deg.
Data Sources: observational data from SeaDataNet/EMODNet Chemistry Data Network.
Description of DIVA analysis: The computation was done with the DIVAnd (Data-Interpolating Variational Analysis in n dimensions), version 2.7.9, using GEBCO 30sec topography for the spatial connectivity of water masses.
The horizontal resolution of the produced DIVAnd maps grids is dx=dy=0.009 degrees (around 975m and 708m accordingly).
The vertical resolution is 14 depth levels: [0., 2., 4., 6., 8., 10., 15., 20., 25., 30., 40., 50., 60., 70.].
A relative correlation length used based on topography gradients and the horizontal correlation length varies from 25 km to 12.5 km. The vertical correlation length (in meters) is:  [4.,4.,4.,4.,4.,10.,10.,10.,10.,20.,20.,20.,20.,20.]. 
Duplicates check was performed using the following criteria for space and time: dlon=0.01deg., dlat=0.01deg., ddepth=0.01m, dtime=1min, dvalue=0.01.
The error variance (epsilon2) was set equal to 1. Data weight was reduced at shallow waters. Data weighting was applied with the following threshold values: lon=0.03, lat=0.03, depth=2.
An anamorphosis transformation was applied to the data (function DIVAnd.Anam.loglin) to avoid unrealistic negative values: threshold value=200.
The mean value was used as background analysis field.
Quality control of the observations was applied using the interpolated field (QCMETHOD=3). Residuals (differences between the observations and the analysis (interpolated linearly to the location of the observations) were calculated. Observations with residuals outside the minimum and maximum values of the 99% quantile were discarded from the analysis. 
Seasons definition: Winter=Jan-Mar, Spring=Apr-Jun, Summer=Jul-Sep, Autumn=Oct-Dec.
Originators of Italian data sets-List of contributors:
- Brunetti Fabio (OGS)
- Cardin Vanessa, Bensi Manuel doi:10.6092/36728450-4296-4e6a-967d-d5b6da55f306
- Cardin Vanessa, Bensi Manuel, Ursella Laura, Siena Giuseppe doi:10.6092/f8e6d18e-f877-4aa5-a983-a03b06ccb987
- Cataletto Bruno (OGS)
- Cinzia Comici Cinzia (OGS)
- Civitarese Giuseppe (OGS)
- DeVittor Cinzia (OGS)
- Giani Michele (OGS)
- Kovacevic Vedrana (OGS)
- Mosetti Renzo (OGS)
- Solidoro C.,Beran A.,Cataletto B.,Celussi M.,Cibic T.,Comici C.,Del Negro P.,De Vittor C.,Minocci M.,Monti M.,Fabbro C.,Falconi C.,Franzo A.,Libralato S.,Lipizer M.,Negussanti J.S.,Russel H.,Valli G., doi:10.6092/e5518899-b914-43b0-8139-023718aa63f5
- Celio Massimo (ARPA FVG)
- Malaguti Antonella (ENEA)
- Fonda Umani Serena (UNITS)
- Bignami Francesco (ISAC/CNR)
- Boldrini Alfredo (ISMAR/CNR)
- Marini Mauro (ISMAR/CNR)
- Miserocchi Stefano (ISMAR/CNR)
- Zaccone Renata (IAMC/CNR)
- Lavezza, R., Dubroca, L. F. C., Ludicone, D., Kress, N., Herut, B., Civitarese, G., Cruzado, A., Lefevre, D.,Souvermezoglou, E., Yilmaz, A., Tugrul, S., and Ribera d'Alcala, M.: Compilation of quality controlled nutrient profiles from the Mediterranean Sea, doi:10.1594/PANGAEA.771907, 2011.";
    String acknowledgement "Aggregated data products are generated by EMODnet Chemistry under the support of DG MARE Call for Tenders MARE/2008/03-lot3, MARE/2012/10-lot4,EASME/EMFF/2016/006-lot4, EASME/2019/OP/0003-lot4.";
    String area_keywords "Mediterranean Sea";
    String area_keywords_urn "SDN:C19::3_1";
    String Author_e_mail "Athanasia (Sissy) IONA <sissy@hnodc.hcmr.gr>";
    String bathymetry_source "The GEBCO Digital Atlas published by the British Oceanographic Data Centre on behalf of IOC and IHO, 2003";
    String cdm_data_type "Grid";
    String citation "Usage is subject to mandatory citation: \"This resource was generated in the framework of EMODnet Chemistry, under the support of DG MARE Call for Tender EASME/EMFF/2020/3.1.11/European Marine Observation and Data Network (EMODnet) - Lot 5 - Chemistry\"";
    String Conventions "CF-1.6, COARDS, ACDD-1.3";
    String creator_email "NODC.Webmaster@noaa.gov";
    String creator_name "HCMR/HNODC";
    String creator_type "institution";
    String creator_url "https://www.nodc.noaa.gov/";
    String data_access "https://emodnet.ec.europa.eu/geoviewer";
    String date "2023-02-27T13:10:45";
    String DIVA_code_doi "10.5281/zenodo.7016823";
    String DIVA_references "Barth, A., Beckers, J.-M., Troupin, C., Alvera-Azcarate, A., and Vandenbulcke, L. (2014): divand-1.0: n-dimensional variational data analysis for ocean observations, Geosci. Model Dev., 7, 225-241, doi: 10.5194/gmd-7-225-2014";
    String DIVAnd_source "https://github.com/gher-uliege/DIVAnd.jl";
    String DIVAnd_version "v2.7.9";
    String documentation "https://dx.doi.org/10.6092/a8cfb472-10db-4225-9737-5a60da9af523";
    String doi "https://doi.org/10.13120/61e77250-b68f-11ed-1190-4bfda496df09";
    Float64 Easternmost_Easting 13.998;
    String file_name "Coastal_areas/Mediterranean_Sea_-_Po_River/Water_body_chlorophyll-a.nc";
    Float64 geospatial_lat_max 45.998;
    Float64 geospatial_lat_min 44.0;
    Float64 geospatial_lat_resolution 0.008999999999999989;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max 13.998;
    Float64 geospatial_lon_min 12.0;
    Float64 geospatial_lon_resolution 0.008999999999999998;
    String geospatial_lon_units "degrees_east";
    String history 
"Tue Aug 29 17:01:50 2023: ncks -O Water_body_chlorophyll-a.nc Water_body_chlorophyll-a.nc
2024-05-27T09:44:56Z http://opendap.oceanbrowser.net/thredds/dodsC/data/emodnet-domains/Coastal_areas/Mediterranean_Sea_-_Po_River/Water_body_chlorophyll-a.nc
2024-05-27T09:44:56Z https://erddap.emodnet.eu/griddap/Po_River_Chl_4D_06e1_24c4_8bde.das";
    String id "DatasetScan/emodnet-domains/Coastal_areas/Mediterranean_Sea_-_Po_River/Water_body_chlorophyll-a.nc";
    String infoUrl "https://dx.doi.org/10.6092/a8cfb472-10db-4225-9737-5a60da9af523";
    String institution "HCMR/HNODC";
    String institution_urn "SDN:EDMO::269";
    String keywords "analysis, body, chla, chlorophyll, chlorophyll-a, data, depth, divand, hcmr, hnodc, latitude, longitude, mediterranean, river, sea, seawater, time, water, water_body_chlorophyll-a, Water_body_chlorophyll_a, Water_body_chlorophyll_a_L1, Water_body_chlorophyll_a_L2, Water_body_chlorophyll_a_relerr";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    String NCO "netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = https://github.com/nco/nco)";
    Float64 Northernmost_Northing 45.998;
    String parameter_keyword "Water body chlorophyll-a";
    String parameter_keyword_urn "SDN:P35::EPC00105";
    String product_code "HNODC-Po River-Water body chlorophyll-a-v2023-ANA";
    String product_id "61e77250-b68f-11ed-1190-4bfda496df09";
    String product_version "2.0";
    String project "EMODnet Chemistry phase 5";
    String search_keywords "Chlorophyll pigment concentrations in water bodies";
    String search_keywords_urn "SDN:P02::CPWC";
    String source "observational data from SeaDataNet/EMODnet Chemistry Data Network";
    String sourceUrl "http://opendap.oceanbrowser.net/thredds/dodsC/data/emodnet-domains/Coastal_areas/Mediterranean_Sea_-_Po_River/Water_body_chlorophyll-a.nc";
    Float64 Southernmost_Northing 44.0;
    String standard_name_vocabulary "CF Standard Name Table v70";
    String summary 
"DIVAnd analysis of Water body chlorophyll-a. Water body chlorophyll-a - Seasonal Climatology for Po River for the period 1980-2019 on the domain: Lon E12.0-14.0 deg.E, Lat N44.0-46.00 deg.N. 
Data Sources: observational data from SeaDataNet/EMODNet Chemistry Data Network.
Description of DIVA analysis: The computation was done with the DIVAnd (Data-Interpolating Variational Analysis in n dimensions), version 2.7.4, using GEBCO 30sec topography for the spatial connectivity of water masses. A relative correlation length used based on topography gradients and the horizontal correlation length varies from 25 km to 12.5 km. The vertical correlation length (in meters) is:  [4.,4.,4.,4.,4.,10.,10.,10.,10.,20.,20.,20.,20.,20.]. Depth range: [0., 2., 4., 6., 8., 10., 15., 20., 25., 30., 40., 50., 60., 70.]. Units: mg/m3. 
The horizontal resolution of the produced DIVAnd maps grids is dx=dy=0.009 degrees (around 975m and 708m accordingly).
Additional analysis parameters: The error variance (epsilon2) was set equal to 1. Data weight was reduced near the coasts. Data weighting was applied with the following threshold values: lon=0.03, lat=0.03, depth=2. Threshold value for log transformation=200.
Seasons definition: Winter=Jan-Mar, Spring=Apr-Jun, Summer=Jul-Sep, Autumn=Oct-Dec.
DOI: 10.6092/nv0n-4996";
    String time_coverage_end "1990-11-16T00:00:00Z";
    String time_coverage_start "1990-02-16T00:00:00Z";
    String title "Mediterranean Sea, Po River, Water body chlorophyll-a [time][depth][lat][lon], 0.009deg, 1999";
    String WEB_visualisation "https://emodnet.ec.europa.eu/geoviewer";
    Float64 Westernmost_Easting 12.0;
  }
}

 

Using griddap to Request Data and Graphs from Gridded Datasets

griddap lets you request a data subset, graph, or map from a gridded dataset (for example, sea surface temperature data from a satellite), via a specially formed URL. griddap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its projection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

griddap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/griddap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41.htmlTable?analysed_sst[(2002-06-01T09:00:00Z)][(-89.99):1000:(89.99)][(-179.99):1000:(180.0)]
Thus, the query is often a data variable name (e.g., analysed_sst), followed by [(start):stride:(stop)] (or a shorter variation of that) for each of the variable's dimensions (for example, [time][latitude][longitude]).

For details, see the griddap Documentation.


 
ERDDAP, Version 2.18
Disclaimers | Privacy Policy | Contact